
Copyright  2001 by the National Research Council of Canada.

Run-time Generation of JavaScript Code
by Perl CGI Programs

Stephen B. Jenkins
Senior Programmer/Analyst

Institute for Aerospace Research
National Research Council

Ottawa, Canada

YAPC::America::North 2001
McGill University, Montreal, Quebec

June 13 – 15, 2001

- 1 -

Abstract

Run-time generation of JavaScript code by Perl
CGI programs is a technique that has been used
with considerable success at the Aerodynamics
Laboratory of the Institute for Aerospace Research,
National Research Council of Canada. After a
brief introduction to the basic concept of dynamic
code generation and its role within the data
acquisition, data display and test-control software
of the 2m x 3m wind tunnel, four specific examples
will be presented each highlighting a different
application of the technique. The first and simplest
example will show the generation of trivial one-
line JavaScript programs. The second example
will show the run-time generation of JavaScript
functions that modify groups of HTML checkbox
elements. The third example will cover form
validation in the browser, complete with pop-up
alert boxes and dynamic images to prompt the user.
The final, and most complex case, will show the
creation of JavaScript code that produces dynamic
behavior in HTML forms. These examples not
only demonstrate the primary benefit of the
technique – a more interactive user interface – but
also show the secondary benefits: reduced load on
both the web-server and web-client computers.

1 Introduction

1.1 Run-time code generation (RTCG)

Run-time code generation is the technique of
having a program create computer instructions –
either another program or more code for its own
thread of execution – “on the fly”, using decisions
made at run-time to influence the final product.
Typically, the concept of run-time code generation
is discussed with the aim of reducing the system
resources (CPU time, memory, etc.) required by
large applications (Keppel et al, 1991; Leone and
Lee, 1994). There is often an implicit assumption
that the same language will be used for both the
generating and generated code and that both will
run on the same computer. This is not unlike the
most common type of RTCG in Perl: using eval to
execute code that is programmatically generated.

In “The Pragmatic Programmer”, Hunt and
Thomas discuss the generation of code in more
than one language (Hunt and Thomas, 2000):

 “Whenever you find yourself trying to get
two disparate environments to work
together, you should consider using active
code generators.”

“Another example of melding
environments using code generators
happens when different programming
languages are used in the same
application. In order to communicate,
each code base will need some
information in common – data structures,
message formats, and field names for
example. Rather than duplicate this
information, use a code generator.
Sometimes you can parse the information
out of the source files of one language and
use it to generate code in the second
language. Often, though, it is simpler to
express it in a simpler, language-neutral
representation and generate the code for
both languages.”

Closer to the topic of this paper are the comments
by Kernighan and Pike in a section titled
“Programs that Write Programs” from “The
Practice of Programming” (Kernighan and Pike,
1999):

“One common example is the dynamic
generation of HTML for web pages.
HTML is a language, however limited,
and it can contain JavaScript code as
well. Web pages are often generated on
the fly by Perl or C programs, with
specific contents … determined by
incoming requests.”

They go on to endorse the technique by saying:

“In spite of the power of program
generators, and in spite of the existence of
many good examples, the notion is not
appreciated as much as it should be and is
infrequently used by individual
programmers.”

- 2 -

data
system

IAR
web-based tools

CGI

other programs

web
server

data
acquisition

event log

dynamic data
display

TCP/IP

data
storage

TCP/IP

CGIconfiguration
file edit

NFS

CGI

CGIplottingNFS

Tecplot®
exec

CGIdata file viewNFS

web
browser

web
browser

web
browser

web
browser

HTTP

HTTP

HTTP

HTTP

NFS

NFS

Figure 1: Operating environment

1.2 Operating environment

Several years ago a decision was made at the
Aerodynamics Laboratory to move away from
proprietary “home grown” user interfaces, toward
the utilization of web-based systems wherever it
was sensible to do so (Jenkins, 2001). This was
done in order to provide clients with a more
consistent and robust method of interacting with
the wind tunnel data acquisition and display
system.

As may be seen in Figure 1, the web interface to
the wind tunnel data system is made up of the five
individual software tools developed at the

Aerodynamics Laboratory, the web server, the web
browsers, and the commercial plotting package
Tecplot. Of the five systems developed in-house,
two deal directly with the data acquisition
programs: the event logging and viewing system,
and the dynamic data display system. These two
tools use client-server relationships and TCP/IP
socket connections to receive their information and
use the CGI protocol to communicate with the web
server. The other three systems – configuration file
editing, data file viewing, and plotting – all receive
their information indirectly through disk storage,
but they too use CGI to interact with the web
server.

- 3 -

To utilize any of these tools, the user simply opens
a web browser on one of the computers in the
control room and the wind tunnel home page will
be loaded automatically. It contains links to each
of the five systems as well as links to formal
documentation, to help files, and to programs that
report the status of each of the servers. Because
virtually all clients of the 2m x 3m wind tunnel are
accustomed to ‘surfing the web’, they require no
instruction in order to be able to make use of any of
these software tools.

1.3 RTCG at the Aerodynamics Laboratory

In order to provide users at a web browser with the
most responsive interface possible, the Laboratory
programming staff has elected to make use of the
JavaScript programming language (Flanagan,
1998). Because JavaScript runs within the user’s
browser (and thus on his computer), it can have a
significantly shorter response time than a CGI
program running on a remote web server. Since
the web pages that contain the JavaScript code are
dynamically generated by Perl programs, and since
the contents of these pages are based on
information available only at run-time, it follows
that the JavaScript that manipulates these contents
must also be created at run-time.

In this paper, four specific examples of RTCG will
be presented, each highlighting a different
application of the technique. The first and simplest
example will show the generation of trivial one-
line JavaScript programs. The second example
will show the run-time generation of JavaScript
functions that modify groups of HTML checkbox
elements. The third example will cover form
validation in the browser, complete with pop-up
alert boxes and dynamic images to prompt the user.
The final and most complex case will show the
creation of JavaScript code that produces dynamic
behavior in HTML forms.

In addition to the primary goal of providing a more
responsive user interface, a beneficial secondary
effect of this technique is the reduction of the load
on web servers due to the reduced number of
requests per user session. Also, one example will
be shown that results in a reduction of the load on
the client computer because of the re-use, rather
than re-load, of a complex web page.

It should be noted that the computers of the 2m x
3m wind tunnel operate within the confines of an

Intranet model: outside access is severely restricted
and allowable hardware and software are tightly
controlled. The techniques covered in this paper
assume this model; readers are strongly cautioned
to examine the suitability of these methods for their
own environments.

2 Specific examples

2.1 Simple one-line JavaScript programs

The first example of code generation to be
discussed is the creation of one-line JavaScript
programs to accomplish simple tasks. Figure 2
shows a portion of the output of a Perl program
that was written to allow users to view, with a
single button click, the contents of any of the data
and configuration files for a given wind tunnel test.
Since tests routinely generate more than 4000 files,
the maximum time required to construct, transmit,
and render this web page is not insignificant
(typically on the order of 10-15 seconds). This
rather lengthy process would need to be repeated
for each displayed file if the HTML buttons were
created to use the default submit action. Instead,
they were fashioned so that when pressed, each
button initiates the execution of a one-line
JavaScript program through its onClick event
handler. This program causes a new browser
window to spring into existence, and then requests
the desired data file from a separate Perl CGI
program (displayfile.pl in the code below)
that was written to format and display a file’s
contents. This technique allows the web page with
the long list of buttons to remain intact in the
original window.

Because the Perl program searches through an
entire directory tree and because it is not
uncommon to have several data files of the same
name in different directories, an additional feature
has been added. When the user presses and holds a
button, the full file path is displayed in the status
line at the bottom of the browser window. This too
is accomplished using a single line of JavaScript
code, but with the onMouseDown event handler. If
the selected file was not the one desired, the user
simply moves the cursor away before releasing the
mouse button.

- 4 -

Figure 2: Data file viewing main web page

The following code is a rudimentary version of the
Perl program that produces buttons as described
above. In order to provide the simplest example

possible, it ignores many issues such as file paths,
HTML table formatting, etc.

- 5 -

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);

get the files to list (use File::Find in real life)
my @filenames = qw(This should really be a list of filenames);

now create a JavaScript routine that opens the new browser window
my $JSmakepage = <<EOF;
 function makepage(filename) {
 newwin = window.open('displayfile.pl?FILE=' + filename);
 newwin.focus();
 }
EOF

start the HTML and send the JS to the browser
print header;
print start_html(-title => 'yapc2001-example1.pl',
 -script => {-language=>'JavaScript', -code=>$JSmakepage});
print start_form(-method => 'POST');

create the buttons that will call the JS routine
foreach my $filename (@filenames) {
 (my $buttonname = $filename) =~ s/\W+/_/g; # do this to keep the browser
 my $buttonvalue = $buttonname; # happy with the names & values
 my $button = '<INPUT ' .
 'TYPE="button" ' .
 'NAME= "' . $buttonname . '" ' .
 'VALUE="' . $buttonvalue . '" ' .
 'onClick="makepage(\'' . $filename . '\')" ' .
 'onMouseDown="window.status=\'' . $filename . '\' " >';
 print "$button
";
}

print end_form(), end_html();

Since the list of data and configuration files is a
“snapshot” of the file system taken at run-time,
dynamic code generation is the only method of
implementing this functionality in a web-based
interface. Although this is the simplest of the four
examples to be discussed in this paper, it clearly
demonstrates all three benefits of RTCG: a more
responsive user interface, a reduction of the load on
the web server, and a reduction of the load on the
client computer.

2.2 Buttons that manipulate groups of
checkboxes

The web page shown in Figure 3 allows users to
initiate a search of data-system event logs (Jenkins,
1999). One of the search criteria that can be

specified is the name of the machine reporting the
event. Although a single checkbox was created to
allow all machine names to be included in the
search, it is common practice to require all but one
or two names from the list. In order to make this
process as convenient as possible a button has been
provided that checks all boxes, allowing the user to
de-select individual machines. Similarly, a single
button click is all that is required to clear all
checkboxes. In the manner described in the
previous section, these buttons have been created
to use the onClick event handler to call JavaScript
functions, rather than cause a submit action.
Since these checkboxes are generated at run-time
from the names in the web server’s hosts file, it
follows that the functions to manipulate them must
also be created at run-time.

- 6 -

Figure 3: Event log query web page

The following code demonstrates the generation of
a group of checkboxes as described above. To
keep the example simple, the list of checkbox
names is given in an array (@machinenames) and
only elementary formatting has been performed.

The process of extracting the names from a hosts
file and modifying them for use in HTML elements
has been omitted as it is not germane to this
discussion.

- 7 -

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);

my $groupname = 'machines';
my @machinenames = qw(This should really be a list of computer names);

generate the JavaScript and HTML
my $js = &createJSfuncs($groupname, @machinenames);
my $html = &createHTMLcheckboxes($groupname, @machinenames);

send the JS and HTML to the browser
print header;
print start_html(-title => 'yapc2001-example2.pl',
 -script => {-language=>'JavaScript', -code=>$js});
print start_form(), $html, end_form();
print end_html();

create the JavaScript 'check all' and 'check none' functions
sub createJSfuncs {
 my $groupname = shift; # the name of the checkbox group
 my @boxnames = @_; # the list of checkbox names
 my $all = "function ${groupname}_all() {\n";
 my $none = "function ${groupname}_none() {\n";

 foreach (@boxnames) {
 $all .= "\tself.document.forms[0].$_.checked = true;\n";
 $none .= "\tself.document.forms[0].$_.checked = false;\n";
 }
 $all .= "}\n";
 $none .= "}\n";
 return("\n$all\n$none");
}

create the HTML for a group of checkboxes with all & none buttons
sub createHTMLcheckboxes {
 my $groupname = shift; # the name of the checkbox group
 my @boxnames = @_; # the list of checkbox names
 my $checkboxgroup = '';

 foreach (@boxnames) {
 $checkboxgroup .= checkbox(-name=> $_) . "
\n";
 }
 $checkboxgroup .= button(-name => "${groupname}allbutton",
 -value => 'Check All',
 -onClick => "${groupname}_all()") . "\n" .
 button(-name => "${groupname}nonebutton",
 -value => 'Clear All',
 -onClick => "${groupname}_none()") . "\n";
 return($checkboxgroup);
}

Although this case does not result in any
significant reduction of the load on either the web
server or client, it does provide a good example of
increased convenience for the user.

- 8 -

Figure 4: Configuration file editor web page

2.3 Form validation

A good introduction to the use of JavaScript to
carry out form validation is contained in
JavaScript: The Definitive Guide (pp. 311-314).
Although Flanagan’s example assumes traditional
static programming, it is easily adapted for run-
time generation by Perl programs.

Figure 4 shows the page generated by a web-based
configuration file editor. The configuration files
for the wind tunnel data system are made up of
several lines, each with the following information:
a name string, a delimiter, a description string,
another delimiter, and the current value. The
descriptor string contains a field type (dropdown or
text) and several field constraints such as minimum
value, maximum value, numeric characters only,
etc. These constraints are used to generate the

JavaScript validation code for each line and when
the “Submit Form” button is pressed, that code is
executed. An error string is built up from any
entries that fail the validation process, and the user
is notified of all problems in a single pop-up dialog
box. In order to remove any potential ambiguity
due to similar names, additional JavaScript code
uses a standard image swapping technique to cause
flashing red arrows to appear beside each of the
offending entries. Once all input data passes the
validation process, the form is submitted to the
CGI program.

It should be noted that, although form validation in
JavaScript is provided as a convenience, the Perl
program should revalidate the input data before it
is used. This is due to the fact that a malicious user
can easily subvert the JavaScript processing,
passing invalid data to the CGI program.

- 9 -

2.4 Dynamic forms

The final and most complex example of RTCG to
be presented is the creation of forms with dynamic
elements. Figure 5 shows a web page that allows
clients to build motion “maps” – files that are used
to control the model attitude and data acquisition
processes. For the sake of brevity, this discussion
will focus only on the radio box and select
elements in the section of the table under the
heading “Action” (Figure 6). It should be noted
(although it does not impact the description to
follow) that this software tool is not yet in regular
use at the Aerodynamics Laboratory. The user
interface and command generator sections have
been completed, but the hardware control code is
still under development.

For each step of a motion map, the user may
invoke any one of three possible types of actions: a
data acquisition process, an arbitrary command file,
or another map process. The desired action-type
can be selected with an HTML radio button. For
each of these three types, there exists several
command files to choose from through the use of
an HTML select box. This arrangement mimics
the structure of the information on disk, where each
action-type has its own directory containing
multiple data-system control files. This system
allows complex combinations of model attitude
and data system operations to be specified quite
succinctly.

The Perl CGI program that creates the web pages
reads the action-type directories and constructs a
pair of JavaScript hashes whose keys are the
action-types. The values of the first hash, called
actionlabels, are strings containing a comma-
separated list of simplified file names – path and
extension are removed. The values of the second
hash, called actionvalues, are strings containing
a comma-separated list of the full file paths. When
the user clicks on an action-type radio button, a
JavaScript function uses that button’s name to
access the pair of hashes, and retrieves the strings
containing the simplified and full file descriptions.
These strings are parsed into their components, and
the options in the “File” select box are replaced
with the information for the action-type requested
by the user.

This process may be more easily understood by
way of an example. To produce the web page
shown in Figures 5 & 6, the acquisition
directory must have contained the following three
files: force.acq, force_press.acq, and
pressure.acq; and the map directory must have
contained the following six files: basicyaw.map,
japh-Erudil.map, pithchandyaw.map,
probe_angle.map, probe_multi.map and
yawspeep.map. The Perl program would have
generated the following JavaScript hashes based on
that information (in the code snippet below,
whitespace has been added to improve readability):

actionlabels["Run Map"] = "none, basicyaw, japh-Erudil, pitchandyaw, probe_angle,
probe_multi, yawsweep";

actionlabels["Run Acquisition"] = "none, force, force_press, pressure";

actionvalues["Run Map"] = "none,
/some/appropriate/directory/map/basicyaw.map,
/some/appropriate/directory/map/japh-Erudil.map,
/some/appropriate/directory/map/pitchandyaw.map,
/some/appropriate/directory/map/probe_angle.map,
/some/appropriate/directory/map/probe_multi.map,
/some/appropriate/directory/map/yawsweep.map";

actionvalues["Run Acquisition"] = "none,
/some/appropriate/directory/acq/force.acq,
/some/appropriate/directory/acq/force_press.acq,
/some/appropriate/directory/acq/pressure.acq";

- 10 -

Figure 5: Motion map editor web page

Figure 6: Motion map editor - detail

- 11 -

The dynamically generated hashes shown above
would have been inserted into the <head> portion
of the web page along with the following
JavaScript function:

function action_changed(actiontype, actfilelist) {

 actfilelist.options.length = 0; // clear the old action file list

 for(i=0; i<actiontype.length; i++) { // find the current action type
 if(actiontype[i].checked) val = actiontype[i].value;
 }

 newlabels = actionlabels[val].split(","); // use the action type to get labels
 newvalues = actionvalues[val].split(","); // and the values

 for(i=0; i<newlabels.length; i++) { // setup the new action file list
 actfilelist[actfilelist.length] = new Option(newlabels[i],newvalues[i]);
 }
 actfilelist[0].selected = 1; // set the default selection

 history.go(0); // redraw page to adjust the width
}

The simplified HTML for the “Action” section of
the default web page is as follows:

<TABLE>
<TR><TD>
<INPUT TYPE="radio" NAME="ACTION1" VALUE="Run Acquisition" CHECKED
 onClick="action_changed(
 self.document.forms[0].ACTION1,self.document.forms[0].ACTFILE1)">
Run Acquisition
</TD></TR>

<TR><TD>
<INPUT TYPE="radio" NAME="ACTION1" VALUE="Run Commands"
 onClick="action_changed(
 self.document.forms[0].ACTION1,self.document.forms[0].ACTFILE1)">
Run Commands
</TD></TR>

<TR><TD>
<INPUT TYPE="radio" NAME="ACTION1" VALUE="Run Map"
 onClick="action_changed(
 self.document.forms[0].ACTION1,self.document.forms[0].ACTFILE1)">
Run Map
</TD></TR>
</TABLE>

<SELECT NAME="ACTFILE1">
<OPTION SELECTED VALUE="none">none
<OPTION VALUE="/some/appropriate/directory/acq/force.acq">force
<OPTION VALUE="/some/appropriate/directory/acq/force_press.acq">force_press
<OPTION VALUE="/some/appropriate/directory/acq/pressure.acq">pressure
</SELECT>

When the user selects a new action-type by
clicking on the “Run Map” radio box, it’s
onClick event handler executes the

action_changed() function which replaces the
“File” select options for the default (acquisition)
action-type with those for the map action-type.

- 12 -

Since the contents of each of the three action-type
directories are not known in advance, run-time
generation of the data hashes is required in order to
take advantage of the performance benefits
afforded by client-side processing in JavaScript.
Although the example has focussed on the
“Action” section of the web page in order to
highlight the dynamic form technique described
above, this Perl program also makes use of the
form validation method described in the previous
example in order to validate the data entered into
the other fields.

3 Concluding remarks

As has been shown in the four examples, the
primary benefit to be derived from this type of
RTCG is a more responsive user interface. At the
Aerodynamics Laboratory, it is felt that this reason
alone justifies the increased complexity of the CGI
programs. The additional benefits in terms of
reduced load on clients, servers and the network
itself, while not insignificant, are “icing on the
cake”. This is due to the fact that, although load
issues may be dealt with simply by spending
money on faster hardware, the advantages gained
by a better user interface – higher comfort level,
increased productivity, shallower learning curve,
etc. – cannot be so easily acquired.

There seem to be two major disadvantages to the
RTCG techniques described in this paper. The
first, and most serious, is the increase in the skill
set required of the programming staff. The
complexity of writing programs that, in the same
file, contain three languages (two programming
and one markup) may seem daunting, but proper
care and the separation of tasks make the process
manageable. The second drawback of this type of
RTCG is the increased difficulty in debugging the
programs. One language can mask or hide errors
from a process in another. The best way to handle
this seems to be to make small, incremental
changes during development, thus minimizing the
scope of the search for erroneous code. As a
programmer gains experience with the techniques,
these two issues become far less problematic.

Over the past several years, run-time code
generation has played an increasingly important
role in the development of new software at the
Aerodynamics Laboratory. This trend is expected
to continue. Within the context of an Intranet such

as the one that exists at the Laboratory, the benefits
of the described techniques far outweigh their
disadvantages.

4 Acknowledgements

The author would like to thank Dr. Steven J. Zan –
the leader of the Montreal Road Wind Tunnel
Facilities Group – for continuing to promote an
atmosphere that is conducive to the investigation
and implementation of new techniques and
technologies.

5 References

Flanagan, D., JavaScript: The Definitive Guide,
Third Edition. O’Reilly & Associates, 1998.

Hunt, A. and Thomas, D., The Pragmatic
Programmer. Addison-Wesley, 2000, pp. 104-105.

Jenkins, S.B., A System for Recording and
Viewing Events in a Distributed Data Acquisition
Environment. yapc99 Proceedings, June 1999.

Jenkins, S.B., Using Perl to Create Web-Based
Software Tools for Wind Tunnel Testing. AIAA
2001-905, 39th Aerospace Sciences Meeting &
Exhibit, Reno, NV, Jan. 2001.

Keppel, D., Eggers, S., and Henry, R., A Case for
Runtime Code Generation. TR 91-11-04, Univ. of
Washington, 1991.

Kernighan, B. and Pike, R., The Practice of
Programming. Addison-Wesley, 1999, pp. 237-
238.

Leone, M. and Lee, P., Lightweight Run-Time
Code Generation. ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program
Manipulation, June 1994.

