Dying With Honor

Peter Chines

YAPC::NA 2003

Abstract

Perl offers a wealth of options for terminating a program and providing feed-
back to users about exceptional conditions. In addition to the core Perl language
constructs, the variety of methods available in the Carp and CGI::Carp modules
give Perl programmers a lot of flexibility in dealing with abnormal situations. This
paper addresses how to use these tools to best advantage and offers examples of
when to use each method of terminating a program. Make sure your programs die
honorably, providing all the information needed to trace and correct a problem,
while avoiding unnecessary clutter.

1 Dying With Honor

One of the most important duties of a program is to effectively communicate to its
users. The form and content of that communication will vary based on the circum-
stances. It is particularly important to communicate well when the program is termi-
nating. The user wants to know: Did it work? if not, What went wrong? and finally,
How do | fix it? Carefully constructed error messages concisely communicate all of
this information.

These messages are commonly sent to standard error, but may also be written to a
log file, or sent via email, pager, or some other mechanism. The choice of mechanism
and the precise amount of information necessary varies, depending both on the exact
type of error and the program’s context, e.g. whether the program is being debugged,
in beta testing, run on an interactive command line, as a subprocess run in batch mode,
or as a daemon process.

One thing is constant: if a program must fail, it is better to fail as early as possible.
That puts the responsibility on the programmer to think ahead. Particularly in the case
of a long-running or potentially destructive activity, a program should check that all
necessary resources are in place before committing to the process. Also, it is important
to distinguish between normal and abnormal execution; when the program fails, it
should usually fail loudly.

Error messages are not the only form of feedback from a terminating program. Sta-
tus codes are also an important channel for information, particularly in an environment
like Unix where one program calls another to perform a task. By convention, a normal
exit is indicated by a return value of zero, while non-zero value means that something
unusual occurred. This convention is embedded in many of the tools commonly used in

a command-line environment, suchraake and the shell shortcut evaluation operators
&& and ||.

The object of this article to is familiarize readers with the tools available in Perl’s
core features as well as the additional features in common modules such as Carp and
CGl::Carp, and suggest ways that they may be useful. In the end, each programmer
must use his or her own judgment to apply these tools to the particulars of a given
situation.

2 CORE Language Features

The basic tools for reporting errors and terminating a Perl program are well known and

frequently used. But there are some subtleties in how even these common tools work.
Everyone can benefit from reading the documentation for these functions. Here is a
quick summary, with some suggestions of situations where they may be useful.

2.1 die

The most commonly used mechanism for terminating a program early déehéunc-

tion. It writes a message to STDERR and terminates with a non-zero status code indi-
cating failuré. You may be surprised to learn that such a simple function has several
pages of documentation. The reason is that our language designers and implementors
have madelie try to “do the right thing” in a variety of different situations. Knowing
exactly howdie works allows you to tailor its functionality to your particular situa-

tion. | will only address the highlights here; sperldoc -f die for much more
information.

If you specify a message that ends with a newline, it will be written exactly as
you specify. If you leave out the newline, however, perl will add the filename and line
number where thédie occurred. If you have read a line from a filehandle, perl will
also add the name of the last filehandle read and the number of the last line read from
that filehandle.

die is used to report all kinds of fatal errors. One common use is for reporting
errors accessing the file system, as in this common idiom:

open FH, $filename
or die "Can't open $filename, $\n";

Note the use o$! in the string to pass on the specific operating system error to the
user, so that she has enough information to fix the problem. For example, the solution
for “No such file or directory” is different from “Permission denied.” Note also the
ending newline. In general, if a file can’t be opened, that problem is not related to a
particular line of your program, and thus there is no point in cluttering up the error
message with this information.

1The actual value returned takes into account the values of the $! (operating system error code) and $?
(child process status code). If both of these is zero, the status code returdid Iy the calling process
is 255. One implication of this is that it is possible to control the status code returned by setting $! to an
arbitrary value before callindie .

On the other hand, with some kinds of errors, it is very appropriate to include
the program and line number, such as when your program reaches an unexpected or
unimplemented part of your code:

if ($type == 1) {
basic_algorithm($data);
}

elsif ($type == 2) {
complex_algorithm($data);
}

else {
die "Sorry, there is no code for type S$type yet";
}

2.2 warn

Thewarn function works much likedie , except that it does not terminate the pro-
gram. The same rules apply regarding the newline at the end of the message.

Warnings are typically issued to report unexpected event or invalid data that it is
possible to recover from. They can also be used to issue debugging messages. For all
but the simplest tasks, it is probably better to use a full-fledged logging system like
Log::Log4perl. Here is a typical use ofarn :

while (<>) {
chomp;
if (mAONd+H)\s+(w+)N) {
process line

}
else {

warn "Invalid data format";
}

}

This code ignores lines that do not have the correct format, emitting a warning that
looks like this:

Invalid data format at ./wtest line 10, <> line 3

2.3 exit

Theexit function simply terminates a program, without writing any kind of message.
Usually, usingexit is not necessary in a well-structured program, since the program
will terminate when it gets to the end of the code and there are no statements left to
execute.

exit may be called with a numeric argument, which is returned as the process
status code Whenexit is called with no arguments, the status code returned is zero.

20nly the lower 8 bits of the integer part of this argument is returned, since the status code consists of
just a single byte.

2.4 END blocks

An END block is code that will run when the program is finishing, regardless of how
the program is terminated. This makes the END block a perfect place to release locks or
other shared resources that your program has acquired. Perl will do its best to execute
this code, whether the program terminates as a resuldlief astatement, a normal exit,

or upon receiving a signal from the operating systeAny time your code acquires a
persistent resource you should use an END block to ensure that it is properly released
under all conditions.

3 Carp.pm

The Carp module, one of the modules distributed with the base Perl installation, offers
several methods that are particularly useful to module writers. These methods are not
just “fancy” versions ofdie andwarn , and they should not be used interchangeably
with them. To access these methods you nuigst Carp; in the package where you
want to use them.

3.1 croak

Thecroak method was designed to report errors that arise from methods being called
incorrectly or being passed bad arguments. Idiee , it writes a message to STDERR
and terminates the progrdmHowever, it reports the error as having occurred at the
point where one of the methods in the current package was called from outside the
package and its parent classes, if any. This is an important point that bears repeating:
croak always reports a file and line number, but the place it reports is not the line
wherecroak appears; it can be several subroutine calls away, and almost always in
a different file. Thus, ifcroak is misused as a synonym fdie , it will generate
misleading information.

croak is most commonly used to report required arguments that are missing, or
arguments that are not the expected type. Because the messagedadmis always
followed by the file and line number of the calling code, it reads better if you leave out
the trailing newline. The line where the method was called may include several method
calls, so it is often a good idea to include the name of the routine that is reporting the
error in the message.

Consider the following example. In the module code, we use Carp:

package MyModule;
use strict;
use Carp;
sub a_public_method {
my ($self, $arg) = @_;

SThere are some signals that cannot be caught, and will terminate the program immediately, e.g.
SIGKILL. In these cases, no cleanup can be performed. This is why terminating a program using this
extreme means should be a last resort.

4Unlike die, it always returns 255 as the status code.

croak "a_public_method: missing parameter”

if 1$arg;
$self->_private_method($arg);
... etc.
}
... more code
1

In the calling program, the module is used and its method is called:

#!/usr/bin/perl -w
use MyModule;
MyModule->a_public_method();

When this code is run, the error reported is:

a_public_method: missing parameter at ./test line 3

Itis good defensive programming practice for each public method to do its own param-
eter checking, androak is an ideal tool for this.

3.2 carp

Thecarp method prints a warning to STDERR, but does not terminate the program.
carp is like croak , in that it reports the file and line number of the last line outside
the current module where a package method was called.

This makescarp an ideal way to report deprecated uses of a module. Say that in
version 1.0 of your module there was a public method cditeq) , but in version
2.0 you decide to replace that method wiithr() . You could just remove théo
method, mention this fact in your documentation and leave it at that. But if there is a
lot of code that depends on your module, you might decide to simply issue a warning
instead, and put off removing the method until later, giving people time to rework their
code. By usingarp to issue these warnings, you can help the programmers who use
your module to pinpoint where their code must be modified. In the moduldpthe
method can even redirect the call to the neavy method:

sub foo {
my ($self, @args) = @_;
carp "foo is deprecated; use bar instead";
$self->bar(@args);

}

The code continues to work, while the message explains exactly needs to be done:

foo is deprecated; use bar instead at ./driver line 27

3.3 confess

Sometimes more information is needed to trace the source of a problem. The Carp
module includes @onfess method, which returns a nicely formatted stack trace,
showing each subroutine call that led to the line wheoefess is executed. After

the stack trace, the program is terminated.

A stack trace is overkill for most exception reportirpnfess is most useful in
diagnosing what went wrong when your program reaches a place that it should never
get to, particularly when that place is deep in your code and there are multiple paths it
could take to get there. Bonfess stack trace looks like this:

Something impossible happened at MyModule.pm line 23
MyModule::c_method('MyModule’) called at MyModule.pm line 16
MyModule::b_method('MyModule’, 'c’) called at MyModule.pm line 11
MyModule::a_method('MyModule’, 'c’) called at ./conftest line 5

Note thatconfess includes the arguments used for each subroutine invocation.

Importing the verbose symbol when using the Carp module makes all calls to
croak behave as itonfess were called, which may be useful in some debugging
situations. It also makes ahrp calls behave like theluck method.

3.4 cluck

cluck displays a stack trace, but does not terminate the program. This method is not
commonly used, and thus is not exported by default when the Carp module is used. To
access it, you must import it explicitly:

use Carp gw(cluck);

It would appear that this method is primarily useful in debugging situations, where it
is not practical to run the debugger interactively.

4 CGl:Carp

The CGI::Carp module is a boon to everyone who writes CGl-based web applications
in Perl. While the module includes all of the same methods that are in the Carp package,
its most useful and important features have nothing to do with these methods.

One of these features is automatic when you use CGl::Carp. All warnings and fa-
tal error messages, whether they originate fioern , die , carp , croak , etc. are
prefixed with a timestamp and the name of the program running. This makes the mes-
sages, which are sent by default to the web server’s error log, much more informative.
This alone makes CGI::Carp worth using.

But wait, there’s more. By importing special symbols in the use clause, you can
turn on additional CGl::Carp features. ImportifegalsToBrowser sends all fatal
errors to the browser window, in addition to the error log. This can be a great help in

developing web applications, returning your meaningful error message to the browser
window, rather than an unhelpful “500 Server Error” page. On the other hand, you must
be careful with the information that you put in your error messages when this feature is
activated. You should take care not to give away important security information, such

as the locations of key files, usernames or passwords.

Importing thewarningsToBrowser method allows you to direct all non-fatal
warnings into HTML comments, which are visible in the HTML page source, but not
rendered in the browser window. To usarningsToBrowser , you must also call
this function (with a true value) after the HTTP headers and initial HTML tags have
been sent:

use CGl,

use CGl::Carp qw(fatalsToBrowser warningsToBrowser);
my $gq = CGIl->new();

print $g->header();

warningsToBrowser(1);

For more information, see the POD documentation for CGl::Carp.

5 Advanced features

Perl also has some less-well-known features that allow you to exercise greater control
over when and how your program issues warnings and terminates.

5.1 Exception Handling with eval

An unexpected condition need not always result in the termination of the program.
Unfortunately, an error condition cannot always be handled in the routine where it is
detected. When it cannot, the best solution is to throw an exception which propagates
up the call stack until it can be handled properly. The alternative, returning error codes
and testing for them in each subroutine call, has several drawbacks:

e it is less readable, with error handling code mixed in with the normal process
flow,

e itis less efficient, because of the extra tests, and

e most importantly, it is more error prone, since you must remember to check for
errors after each call.

Perl useslie andeval to provide a basic exception handling mechariswithin an

eval , would-be fatal errors are trapped, so that they cause an immediate exit from the

eval , with the error message in the varia§i@ The program does not terminate, but

continues with the line immediately following tlewal statement. Subsequent state-

ments can check the value $@and take action depending on the error that occurred.
Here’s an example:

5For more traditional try/catch semantics, take a look at Error.pm and Exception.pm.

while (<>) {
eval {
deep_nested_subroutine_that_may_die($);

h
if (3@) {
if (3@ =~ /expected error/) {
next;
}
else {
die $@;
}
}

}

Note that theeval block is defined with brackets, rather than quotes. This is more
efficient, since the evaled code is only compiled once, rather than every time the code
is executed.

5.2 Signal Handlers

One of the special predefined variables in Perl is%®IG hash, which allows you
to specify routines to handle various signals from the operating system. Perl extends
the signal handler metaphor to include the special signalBiE__ and__ WARN__
as well. Establishing signal handlers fdie andwarn allow you to customize the
behavior of your program whenever these routines are called. And since the Carp
module uses the coie andwarn routines internally, these handlers apply to the
various Carp methods as well.

To set up a signal handler, simply assign a subroutine reference to the hash element.
Signal handlers like this have a variety of uses. You could use them to write all fatal
errors to a log file as well as ®TDERR

open LOG, ">>$logfile"
or die "Can't append to $logfile, $"\n";
$SIG{_DIE__} = sub { print LOG @_; };

Note that even though our handler does not explicitly dal , it is implicitly called

at the end of the handler. You can, however, dal explicitly in the handler; it does

not result in an endless loop. If we want to change the error message, for example,
prefixing each fatal message with the name of the script that is running, we could set
up a handler like this:

$SIG{ _DIE_ } = sub { die $0, " ", @_; };

There is no way to prevent the program from terminating withitiea signal handler.
Signal handlers for warning are different. If you don’t explicitly do something with
the warning message, nothing happens. One way to sileffegatings is to set up a

61f you want to avoid compile-time warnings as well, then you must establish this signal handler in a
BEGIN block near the start of your code.

null handler:
$SIG{__WARN__} = sub { }

Needless to say, this is rarely a good idea. Another possibility is to convert all warnings
to fatal errors:

$SIG{ WARN__} = sub { die @_; }

Only one handler can be active at any given time, so signal handlers should be used
sparingly, and probably not at all in modules or library code unless well documented.
In particular, signal handlers like these are the mechanism used by CGl::Carp to modify
the content and destination of warnings and fatal error messages, and thus you cannot
define your own signal handlers fdie andwarn at the same time you are using the
CGl::Carp module.

Thedie signal handler is called even within awal , at least in current versions
of Perl, so if you use both a signal handler and evals in your program, read the docu-
mentation carefully to make sure they interact the way you intend.

6 Conclusion
In summary, an honorable program will:

o fail quickly and loudly

e always provide enough information for someone to identify and fix the problem
¢ avoid providing more information than is needed

e use END blocks where needed

e use Carp in your modules to report misuse of your module by driver code

e use exception handling, either wittie/eval or a specialized module, rather
than propagating error codes through deeply nested subroutine calls

Writing a program that performs correctly under normal conditions is not easy; writing
one that also handles unexpected conditions gracefully is even more challenging, but
that is our task. With an understanding of your users and the context in which the pro-
gram will be run and an in-depth knowledge of your tools, not to mention a dedication
to craftsmanship and ruthless testing, you can create high-quality programs that meet
this challenge.

A Appendixes

A.1 Resources

Nearly all of the information in this article can be gleaned by a careful reading of
Perl’'s extensive online documentation. In particular, peddoc -f to read the
man pages fodie , warn, exit andeval .

Also useperldoc to review the documentation for the standard modules Carp
and CGl::Carp, and check out CPAN for additional modules mentioned in this article,
such as Error, Exception, and Log::Log4Perl.

A.2 Acknowledgements

I'd like to express my appreciation to Dr. Francis Collins, director of the National
Human Genome Research Institute and my boss, who makes NHGRI a great place
to work. I'd also like to thank my colleagues at NHGRI, past and present, who have
helped me become a better programmer, including Gunther Birznieks, Anthony Masi-
ello, Joseph Ryan, Eric Tachibana, Kenneth Trout, Narisu Narisu, Terry Gliedt, Arjun
Prasad, John Pearson, Ingeborg Holt, Ben Hsu and Lowell Umayam. Thanks also to
all of the people who have contributed to making Perl a great language, and its docu-
mentation such a rich resource for the whole community.

10

